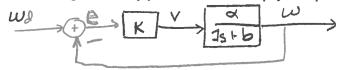
Mechanical Systems Laboratory Integral Control; Introduction to Second Order Systems

1. Integral Control

Imagine that you use proportional feedback to control the velocity of a DC brushed motor:


Jw+bw = 7m = av V= -k(w-wd)

Aynamics current amplifier FB controller

where v= voltage input to current amplifier

where $\sqrt{=}$ voltage input to current amplifier that powers the motor, $\omega =$ actual angular velocity of motor, sensed with a tachometer, $\omega_d =$ desired angular velocity, K = proportional feedback gain, alpha = proportionality constant relating v (i.e. current amplifier input) to torque output from motor, b = viscous friction.

Draw a block diagram to help you understand the physical parts to the system.

Problem: Show that there is a steady-state error in velocity due to the friction.

Approach 1: Use D. Eq.

Jiv + b w=-ak(w-wd)

Jiv + (btok)w=akwd

Pet dat > 0

W= \frac{\alpha}{Js+b} + \frac{\alpha}{Js+b} + \frac{\alpha}{Js+b} = \frac{\alpha}{Js+b} \frac{\alpha}{Js+b} = \frac{\alpha}{Js+b} \frac{\alpha}{Js+b} = \frac{\alpha}{Js+b} \frac{\alpha}{Js+b} = \frac{\alpha}{\alpha}{\alpha} = \frac{\alpha}{Js+b} = \frac{\alpha}{Js+b} = \fr

KEY IDEA: We can get rid of this steady-state error by using a proportional plus integral (PI) controller:

V=-Kpe-K_fedt

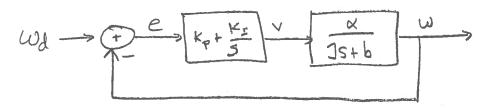
Note w=e, w=e if wd=constant

Jé+(b+xKp)e+xK_1e=0

Jw+bw=-aKpe-aK_fedt In steady state, e=e=0

XK_re=0

XK_re=0


Ess=0

How does I control work? (try to explain it to your neighbor in words).

Integral control works in the following way:

If error e(t) does not equal zero, then $\int e(t)dt$ increases with time, and eventually the torque (which is proportional to this integral) becomes high enough to overcome friction.

The block diagram for a P-I compensator is:

What is the transfer function for this system?

$$\omega = \frac{\alpha}{Js + b} V = \frac{\alpha}{Js + b} \left(\frac{k_p s + k_r}{s} \right) \left(\omega_d - \omega \right) \qquad \omega = \frac{Js^2 + (b + \alpha k_p) s + \alpha k_r}{Js^2 + bs} \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) = \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + bs} \right) \qquad \omega \left(\frac{Js^2 + bs}{Js^2 + bs} + \frac{\alpha k_p s + \alpha k_r}{Js^2 + b$$

This is an example of second order system, which behaves differently than a first order system.

	Typical behaviors in time domain (step response)		Typical behaviors in frequency domain	
First order system	Stable low pass	table	8	low pass
	high pass	1	\$ \\ \sigma_c	high poss
Second order system	Constants /		I e steeper cut off	
	Im Oscillation Al		A source of the second	· resonance
			-	

Important Ideas: integral control can help remove steady state error. However, I-control adds dynamics to the system, which can lead to 2^{nd} order phenomena such as oscillation and resonance.